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Abstract. For practical purposes, information-gain adversarial malware
may soon become undetectable using current function-based signature-
matching AV techniques. We propose and sketch defenses that adopt an
interactive approach, based on controlling information-centric Kullback-
Leibler distances.

1 Introduction

We shall discuss the question how to tackle the detection of highly evolved, mod-
ern malware. In light of results which suggest the practical and perhaps theo-
retical limitations of traditional ‘white-box’ AV approaches, we propose moving
beyond predominantly byte sequence-matching white-box AV premised on clas-
sic Turing Machine, function-based assumptions towards iterative games and
black-box process modeling, as expressed by interactive computing models.

The rest of this paper is structures as follows: Sec. 2 gives a short overview
of modern malware characteristics. Sec. 3 the assesses current AV’s capability
to handle said malware. Sec. 4 describes additional environmental factors and
structures which work in modern malware’s favour. Sec. 5 describes passive tar-
get techniques and active defense frameworks based on controlling the malware’s
information gain. Sec. 6 briefly discusses the direction and implication of this
approach.

2 Malware

Polymorphic malware contain decryption routines which decrypt encrypted con-
stant parts of the malware body. The malware can mutate its decryptors in sub-
sequent generations, thereby complicating signature-based detection approaches
by limiting the ‘constant base’ to the decryption routine and the occasional odd
invariant in the body.
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Metamorphic malware generally do not use encryption, but are able to mutate
their body in subsequent generation using various morphing techniques, such as
junk insertion, semantic NOPs, equivalent instruction substitution, code trans-
position, subroutine permutation, incremental stack construction, and register
reassignments [1–3]. For a recent formalization of these code mutation tech-
niques, the technical reader is referred to [4].

K-ary malware, of which at this time only laboratory or very trivial examples
are known to exist, partition their functionality spatio-temporally into k distinct
parts, with each part containing merely an innocuous subset of total instructions.
In serial or parallel combination, they subsequently become active [5].

Information-gain adversarial malware It is our contention that modern malware
systematically thwarts information-theoretical entropy reduction. The imple-
mentation characteristics of this design philosophy include massive generation of
functionally equivalent phenotypes, sophisticated UEP (unknown entry point),
anti-emulation, anti-disassembly, code integration, substitution, decoy and sub-
routine permutation techniques, within a time-dependent, multi-stage structure.
We will term this abstract type information-gain adversarial malware.

We will emphasize its techniques’ pronounced information-theoretical dimen-
sion: The systematic adversarial design of this breed of malware strives to reduce
the relative information gain of the defender: Given constant static analysis
time, there is increasing uncertainty about the location, control flow handoff
and activation triggers, and even existence (through code integration diffusion)
of malware. Similarly, given constant dynamic analysis time, through dummy
loops, k-ary design, anti-VM and anti-emulation countermeasures, modern mal-
ware systematically lessens the hoped-for information gain of these defensive
emulation techniques. We stress that the reduction needn’t be complete, or even
unmitigatable under more relaxed resource constraints. Our concern are the
practical, day-to-day, near-real-time demands on these defensive techniques.

3 Anti-Virus

Estimated malware-attributed economic damages have been hovering around
$14b/year for the last seven years [6]. During the same time span, the host base
(end systems with IP addresses) grew from 93m to roughly 490m [7]. In conjunc-
tion with stagnating damages, these numbers could plausibly be interpreted as
a success story for signature-based anti-viral (AV) software, nowadays routinely
deployed on end systems.

Commercial antivirus (AV) products rely mostly on signature matching; the
bulk of which constitutes strict byte sequence pattern matching. AV vendors have
developed some static and dynamic analysis enhancements; the former based on
DFAs (wildcards, regular expressions), the later on heuristics such as emulation
and runtime analysis. For detection and mitigation of modern malware, however,
these AV techniques will soon hit their practical and maybe theoretical limits.
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3.1 Empirical Detection

Recent empirical AV detection rates for recent modern malware do not look
reassuring. In February 2007, for instance, seventeen state-of-the-art, updated
AV scanners were checked against twelve well-known, previously submitted,
highly poly- and metamorphic malware samples. The miss rate was 100% to
0%, with an average detection miss rate of roughly 38% [8]. The capabilities
and general detection rates of variants produced by over five to ten year old,
freely available hobbyist engines such as the Mistfall (W32/Zmist), MetaPHOR
(W32/Simile), and more recently, the code-building MSIL metamorphic engine
(MSIL/Gastropod), as well as 150+ other kits and mutators should give some
pause [1, 9].

Polymorphic malware identification may be bolstered by indications that cer-
tain structural homogeneities viz non-malicious software are sufficiently dis-
turbed by encryption to be detectable by statistical entropic differential analysis
[10, 11]. Ominously, recent results also indicate that current AV seem unable to
detect within a reasonable time frame proof-of-concept k-ary malware, or even
disinfect the system completely after detection occurred [5].

Some industry experts continue to maintain that heuristics enhancements such
as emulation and runtime analysis will keep up with modern challenges [12].
Recent research, however, showed the general limitations of highly sophisticated
classifiers [13] against data which exhibit information-gain adversarial traits such
as worm traffic and email spam [14].

3.2 Theoretical Detection

It should be noted that current AV approaches could try to leverage their power
by normalizing [15, 2] and second-order transformation detection techniques [16],
and as such potentially address some present-day metamorphic obfuscation [17].
Though theoretical detection concerns have been recognized early on [18] and
emphasized recently [5], they seem under-appreciated (maybe forgotten) in prac-
titioner’s circles. It is quite likely that undecidability [19] and computational
complexity issues [20] will soon be at odds with mundane practical constraints
of tractable detection, as has recently been reported [5].

From an AV modeling point of view, we also may find the Turing machine
model (equating computation as such with mathematical closed-box transfor-
mations of input to output [21]) insufficiently expressive to capture this type of
information-gain adversarial malware1. If this radical conjecture is true, Turing
machine models premised on the (strong) Church-Turing thesis (computation-
as-functions) may have to give way to more expressive models, such as those
1 Interestingly, the necessity of theoretical model evolution was foreshadowed by Tur-

ing in his 1936 paper [22] with his choice ‘c-machine’, as opposed to the standard
automatic ‘a-machine’
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based on interactions. We shall pick this up in more detail in Sec. 5.3, as we now
turn our attention to the target of modern malware.

4 Digital biotopes, habitats and predators

The Internet consists of a substrate of connected physical networks (education,
commercial, governmental, country, etc). On a logical level these separate net-
works can minimally communicate via the IP network layer protocol. Recent
years also witnessed the rise of mobile, wireless IP via bridged cellular networks.
This logical IP substrate is overlayed (mostly) transparently with other logical
networks that serve a variety of purposes (such as DNS, P2P, IRC/IM, fileshares,
email, surface WWW, dark WWW with database backend, router, online gam-
ing, etc) which communicate mostly via higher-level protocols.

These logical networks can roughly be viewed as the digital equivalent of natural
biotopes. In keeping with the ecological simile, they serve as ‘habitats’ for a
variety of specialized software. Habitats give rise to predators and parasites;
malware can be seen as the rough digital equivalent. Two distinctive features
of the digital biotopes and its denizen give predatory types of programs an
advantage over similar predator-prey setups in the natural world: Monoculture
as a result of engineered design processes and mutation time scales.

Our global network infrastructure was consciously designed by humans. It did
not evolve ‘blindly’ in any fundamental sense like natural systems. The primary
objective - at least viz the topology - was to ensure communication survivability,
its subsequent development was geared towards the seamless exchange of data
between trusted sources and, to a lesser extent, generativity [23]. Early systemic
host diversity requirements would have likely impeded the explosive growth of
the global network infrastructure, as would have network-wide immune system
with the added extra layers of complexity and cost.

These qualitatively different selection criteria (together with explicitly designed
objectives) mark a crucial distinction between semi-evolved/engineered elec-
tronic network system and the ecological system that informed our analogy. It
has been argued from first principles, for instance, that the Internet router topol-
ogy is the product of a generative HOT (Highly Optimized Tolerance) mechanism
[24].

HOT mechanisms are processes that induce highly structured, complex systems
through processes that seek to optimally allocate resources to limit event losses
in an probabilistic environment [25]. The induced systems tend to be robust
towards anticipated perturbations but fragile towards the unknown/unexpected;
an important characteristic that benefits both predator and prey to a discussion
of which we shall return later.
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Our global engineered networks are homogenous in a way that natural selection
would have selected against in ecological networks. In natural biotopes, there
is enough random fluctuation of the constitutive elements (people, organisms,
geography and the environment) to dampen the effects of most failures. For
instance, the 1918 influenza outbreak after WW1, the often forgotten but the
most devastating pandemic in human history (50m-100m deaths [26]) did not
wipe out humanity. Instead, the airborne, highly infectious disease retreated
after ravaging most of the globe. Variations in individuals, natural population
movement, physical isolation prevent most catastrophic failures from cascading.
When humans impose homogeneity, catastrophe can ensue: Corn and cotton
monoculture in US agriculture is blamed for devastating losses by disease and
predators in the 20th century [27, 28].

In networks, we got a preview with the ‘Code Red’ worm suite (July-August
2001), one version of which managed to infect over 350,000 Microsoft IIS servers
in a 14 hour period [29]. The potential security implications of software mono-
culture was studied relatively late in the network life cycle. Addressed by Forrest
in 1997 [30], an unheeded paradigm shift in favour of heterogenous networks was
proposed in 2001 [31] and picked up by Geer et al [32] again in 2003.

These assertions are not specious: See the market leader’s share for the host
(PC) biotope (2006: 65%-85% [28]); web biotope (2006: 60% run Apache’s httpd
[33]); DNS biotope (2004: 75%-95% run bind, including the 13 root servers); mail
biotopes (2001: 42% run sendmail); database biotope (2005:44% run mysqld),
and the list goes on [34].

Compounding this homogeneity-induced susceptibility is the relative quicker
evolvability (and soon autonomous adaptability) of digital predators.A back-
of-the-envelope calculation for cultured bacteria illustrates this point: So-called
‘generation times’ for most cultured bacteria - growth rates during the expo-
nential phase - vary from about 15 minutes to 1 hour [35]. A modern measure
for phenotypical variability is the ‘haldane’ which indicates phenotypic standard
deviation per generation. On the time scale of one generation, the rates are
0.1-1 haldanes [36], this corresponds roughly to 4%-30% change per generation
(rates changes over different time scales, a fascinating subject in its own right).
However, because biological evolution is blind and random (subject to selection
pressures), not all mutations will be viable, nor improved the bacteria.

This is not the case for malware engineering which is both purposeful (func-
tionality is preserved) and algorithmic (viability is preserved). Assuming con-
servatively that variants can be generated at a rate of maybe 10-1000 muta-
tions/minute, depending on the complexity of the binary, this means that digital
predators can evolve viable offspring at a rate of at least two to five orders of
magnitude faster than their ecological counterparts (theoretically ad infinitum
[37]).
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Add to the witches’ brew of information-gain adversarial techniques the abil-
ity to jump across habitats (for multi-habitat malware, see the proof-of-concept
PC-to-PDA ‘Crossover’[38]) and certain certain topological features of networks
[39], and it is feasible that before long, the Internet will have undetectable, per-
manently roving diseases. The first generations may be containable through con-
certed, coordinated efforts, but subsequent ones may be undetectable via present
means, and for all intents and purposes, ineradicable. Note that the email-born
Bagle/Beagle worm (which first appeared in 2004) is already a plausible con-
tender: 30’000 distinct variants server-side supplied in 2007 alone, an average of
625 new variants a day [40, 41]. It seems prudent to shift and adapt some de-
fense resources to specifically counter this type of information-gain adversarial
malware.

5 Practical directions towards information-centric
defenses

Information-adversarial design strives to reduce the relative information gain of
the defender’s strategies. Defenders have to enrich their byte pattern matching
techniques by adopting a similar Bayesian, information-centric viewpoint, con-
trolling both entropy of the prior distribution, as well as the information gain in
the a posteriori distribution. Some defenses will actively engage in an iterative
2-player (possibly n-player), imperfect, non-zero-sum game in order to control
the relative information gain of the malware’s reconnaissance and influencing its
decision algorithms.

This active approach bears some similarities to the concept of subverting
an enemy’s OODA (Observe, Orient, Decide, and Act) loop, an information
warfare strategy pioneered by military fighter pilot Col. John Boyd which seeks
to pro-actively influence and change enemy behavior [42]. The interplay between
observation, hypothesis generation, feedback and analysis is illustrated in Fig. 1
from [43] .

Fig. 1. OODA Loop
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In our context, defenses may also be expressed passively and target the prior
distributions. This passive tack seeks to lessen exploit success by introducing
heterogeneity in the digital biotopes. Hence, informally, through decoys and ir-
regularities, interactions and observations, defenders probabilistically implement
strategies that actively and passively lead the malware astray.

5.1 Controlling Information Gain

On an abstract level, we propose manipulating the Kullback-Leibler distance [44]
for observational decision hypotheses H1 over H0, in favour of the defense. We
stress control, not minimize. The goal is not primarily to confuse the malware by
keeping entropy as high as possible (although under some situation minimization
is a strategy, see illustration); the goal is to enter the opponent’s decision loop
(control flow) and similar to chess, lead the opponent down the path that is most
amenable to victory. We have

DKL(p(x|H1)||p(x|H0)) =
∑

i

p(xi|H1) log
p(xi|H1)
p(xi|H0)

(1)

where

x ≡ observation made by malware (2)
p(x|H1) ≡ conditional probability of observation x given H1 (3)
p(x|H0) ≡ conditional probability of observation x given H0 (4)

Illustration A toy illustration is in order. Say the malware is scanning a subnet
N . Let xi = 1 if a ICMP response is received from host i, xi = 0 otherwise. Let
H1 be the worm’s hypothesis (used internally for control flow decisions) that
host i is a target, H0 that host i is not a target. Assume the malware receives a
response xj = 1 for a given host j. We have

DKL(p(xj |H1)||p(xj |H0)) = p(xj |H1) log
p(xj |H1)
p(xj |H0)

= p(xj = 1|H1) log
p(xj = 1|H1)
p(xj = 1|H0)

= p(xj = 1|H1) (log p(xj = 1|H1)− log p(xj = 1|H0))

where

p(xj = 1|H1) ≡ probability of getting a response, given j is a target
p(xj = 1|H0) ≡ probability of getting a response, given j is not a target

Now consider three sample defense strategies, S (no defense), SHNP (honeypot),
SFLT (filter/block ICMP response) and the effects on the DKL distance used by
the malware for further action in Table 1. Here, we controlled the information
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Strategy p(xj = 1|H1) p(xj = 1|H0) DKL Interpretation

S 1 0 1(1− 0) = 1 H1 (viable host) is favoured over H0

SHNP 1 1 1(1− 1) = 0 No information gain to favour H1 over H0

SFLT 0 0 0(0− 0) = 0 No information gain to favour H1 over H0

Table 1. Malware information gain under three defense strategies

gain of the a posteriori distribution. Both SHNP and SFLT defense strategies
make it impossible for the malware to favour one hypothesis over the other, on
empirical grounds. We have hence influenced the malware’s control flow, and as
such, entered and controlled its OODA loop. We shall now discuss passive and
active implementations adopting this information-centric point of view.

5.2 Passive Defense Techniques

Passive techniques that affect the prior belief distribution have been developed
for some time now, even though their deployment is relatively recent.

Honeypots and honeynets [45] - simulated decoys that detract from ’real’ net-
works, hosts and services - are probably the best-known examples though this
was not their primary raison d’être. [46] implement a recent highly scalable
cleverly parsimonious hybridization of low- and high-interaction honeynets that
doubles as a platform for malware collection.

On the executable level, and leveraging the fact that exploits are highly sensitive
to unexpected disturbances in the exploit environments (for an illuminating
example of the highly complex dependencies between user/kernel processes and
threading, see the Slammer conditions[47]), ad-hoc hot patching techniques such
heap, stack, and format string mutations [48] have been proposed. More mature
techniques include various address space layout disturbances, such as random
heap, stack, library positioning at compile, link and load times [49].

Homogenizing the a priori belief distribution of defense mechanisms also falls
under this rubric; for an example of detection classifier randomization with re-
markable empirical results, see [50]. It is somewhat heartening that the very
same generative optimization processes[25] that induce executable structures
with fragility viz unexpected perturbations (see [51] for a buffer overflow vul-
nerability example) can be leveraged against the exploits that target them. In
the long run, a framework of Matryoshka-esque VMs may have to complement
these passive techniques.

5.3 Active Defense Framework

We seek to manipulating the malware’s view of the world. This entails modeling
its internal hypothesis structure, entering its OODA loop and hence controlling



9

its decisions. To this end, we need an observation framework that can infer
said internal hypothesis structure and a control framework that dynamically
chooses strategies which control adversarial information gain for the benefit of
the defender.

Fig. 2. PQS operation sequence

Process Query System PQSs were initially designed to solve the Discrete
Source Separation Problem by setting up a DBMS framework that allows for
process description queries against internal models, a task for which traditional
DBMS are unsuitable, since the queries (e.g. SQL) are typically formulated as
Boolean expressions [52]. These models can take the form of Finite State Ma-
chines, rule sets, Hidden Markov models, Hidden Petri Nets, among others.

Four sequential components are linked together in a PQS [53]: Incoming ob-
servation → multiple hypothesis generation → hypothesis evaluation by models
→ model selection. The overarching goal is to detect processes by leveraging the
correlation between events (such as observations) and the processes’s states.

Fig. 2 from [54] illustrates these components. Processes have hidden states
which emit observables. The relationship between observables and states is not
bijective, meaning a given observation may be emitted by more than one state.
The so-called ‘tracks’ are associations of observations to processes. Hypotheses
represent consistent tracks that explain the observables. The hypotheses in our
domain correspond to the malware’s internal control structure, which is inferred
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from its behaviour through observation. We propose that a PQS serve to dynam-
ically ‘black-box model’ modern malware. The necessary observation events can
be both passively recorded and actively enticed through iterative interactions.

Interactive Computations The notion of computability rests largely on the
Church-Turing thesis. Although the Church-Turing thesis refers explicitly to the
computation of functions, this small but important caveat is not emphasized
to the extent that it should be; instead it is understood to mean that Turing
machines model all computation [55]. Herein lies the flaw: Not only are there
some functions that cannot be computed by Turing machines (see Rado’s Busy
Beaver[56]), but more fundamentally, not all computable problems are function-
based to begin with.

Fig. 3. Computation as a function-based, closed transformation from input to output.

Function-based or algorithmic (with loops) computation requires the input
to be specified at the start of the computation; in other words it is a closed
transformation from input to output (Fig. 3). Knuth’s recipe “toss lightly until
the mixture is crumbly” is therefore not algorithmic because it requires feedback,
an interaction with the environment, to determine when to stop.

Fig. 4. Computation as a interactive, open transformation from input to output.

In contrast, interactive computational models serve as a theoretical bridge
between Turing Machines (functions) and interaction (communication) with the
environment. The computation is open, I/O happens during computation, not
just before or after (Fig. 4). This model describes everyday computing more
accurately than closed transformation, since a GUI, an OS, a Control System
does not ‘compute’ in the strict closed algorithmic sense of computing.
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An informal discussion of computing problem solving, a more extensive elabora-
tion of above argument, as well as a canonical reference on Interactive Computing
can be found in [21, 55, 57].

Iterative imperfect non-zero-sum games The goal of the control framework
is to create the illusion of win-win (non-zero-sum) viz the malware’s goals by it-
eratively either weakening useful/accurate and strengthening useless/misleading
information gain through defensive strategies. Game theory provides a suitable
interactive framework. An expansive treatment is outside of the scope of this
text, see [58, 59] for a canonical text, as well as online resources at all levels and
domains.

KL over time Iterative games imply that the information gain measure has a
temporal dimension ∆t. We refine Equ. 1

DKL(p(x|Hi)||p(x|Hj))
tk

, i 6= j (5)

where

tk ≡ time differential between round r and r-1 , tr − tr−1

Equ. 5 can be used as an objective function in a dynamic optimization framework
to choose strategies that control the adversarial information gain at each step.
Tarpits[60] capture the ‘temporal control’ flavour of this technique. The Siren
system [61] offers an example of a strategy in this context: For the purpose of
thwarting mimicry attacks, Siren tries to coax the adversary into producing a
known sequence of network requests. Game-theoretical approaches for IDS have
been studied extensively [62, 63]. Strategy sets may amount to reverse Turing
tests: The CAPTCHA thwarting of automated bot signups is probably the most
familiar example [64]. Recently, NEC has developed technology that can tell
humans from computers to combat VoIP phone spam[65].

5.4 Illustration

Our active defense framework is sketched in a toy example in Fig. 5. Sup-
pose the malware’s toy internal hypothesis structure and strategies are modeled
by Scan;if XP penetrate;if filtered DoS in a PQS internal model. The
defense’s strategies are S (no defense), SHNP (honeypot), SFLT (filter/block
ICMP response). The game matrix shows the payoffs of the defense’s and mal-
ware’s strategy combinations. The malware starts scanning and wants to get
to [Pen, S] penetrating a real host. The defense wants to engage sequential
strategies such that the malware penetrates a fake host [Pen, SHP ], thereby
giving the illusion of a win for the malware while learning more about it. Again,
the defense wants to iteratively control, not necessarily minimize the malware’s
DKL(p(x|Hi)||p(x|Hj)). Strategies may not be fixed and dynamically generated
as PQS models adapt to the malware responses, as denoted by S... (new defense
strategy) and < UO > (unknown observation).
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Fig. 5. Active Defense: Observation/Modeling through PQS, Control/Response
through interactive game strategies

Thus, our proposed interactive, OODA-loop subverting strategic ‘judo’ against
modern malware marks a philosophical shift. From from predominantly byte
sequence-matching white-box scanners premised on classic TM function-based
assumptions, we suggest moving towards more ‘Interactive Computation’ through
the use of interactive iterative games and black-box process modeling.

6 Challenges ahead

So far, PQS models have to be provided a priori and cannot be generated on
the fly; at most, parameters can be tuned. Dynamic generation of such models
that accurately reproduce the malware’s hypothesis structure is a formidable
hurdle. Fruitful research directions may include genetic programming, and re-
combinant mechanisms that may resemble the very same metamorphic engines
that produced the malware. From the internal PQS models, a novel process-
based malware taxonomy will have to arise. The description will be richer, more
holistic than traditional behaviorial profiles in that the malware’s internal hy-
pothesis structure (its decision loop and control flows - traditionally the domain
of white-box analysis) will have to largely be inferred by the effects of strategies
used in the iterative games.
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This taxonomy, together with a suitable process-oriented visual language, visu-
alization tools, and emulation environments, will have to be developed sui generis
for the study of these engineered phenomena. We proposed here a systems-
oriented framework which leverages techniques from Interactive Computations,
Bayesian statistics, iterative 2-player (possibly n-player) imperfect non zero-sum
games, and process query analysis.

We end on a philosophical note. Tackling this intriguing problem of approaching,
comprehending and cataloguing complex dissimulated entities interactively from
the outside, we may find that this reproduces - in the context of digital biotopes -
in spirit the naturalist approaches of Alexander v. Humboldt/E.O Wilson/Rachel
Carson. The faint outlines and first touches of this program are found in [66, 46,
67, 16, 47, 68, 69]. In effect, these directions may be instrumental in laying the
groundwork for a new subfield of the natural sciences.
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